SemEval-2016 Task 7: Determining Sentiment Intensity of English and Arabic Phrases
نویسندگان
چکیده
We present a shared task on automatically determining sentiment intensity of a word or a phrase. The words and phrases are taken from three domains: general English, English Twitter, and Arabic Twitter. The phrases include those composed of negators, modals, and degree adverbs as well as phrases formed by words with opposing polarities. For each of the three domains, we assembled the datasets that include multi-word phrases and their constituent words, both manually annotated for real-valued sentiment intensity scores. The three datasets were presented as the test sets for three separate tasks (each focusing on a specific domain). Five teams submitted nine system outputs for the three tasks. All datasets created for this shared task are freely available to the research community.
منابع مشابه
LSIS at SemEval-2016 Task 7: Using Web Search Engines for English and Arabic Unsupervised Sentiment Intensity Prediction
In this paper, we present our contribution in SemEval2016 task71: Determining Sentiment Intensity of English and Arabic Phrases, where we use web search engines for English and Arabic unsupervised sentiment intensity prediction. Our work is based, first, on a group of classic sentiment lexicons (e.g. Sentiment140 Lexicon, SentiWordNet). Second, on web search engines’ ability to find the cooccur...
متن کاملNileTMRG at SemEval-2016 Task 7: Deriving Prior Polarities for Arabic Sentiment Terms
This paper presents a model that was developed to address SemEval Task 7: “Determining Sentiment Intensity of English and Arabic Phrases”, with focus on ‘Arabic Phrases’. The goal of this task is to determine the degree to which some given term is associated with positive sentiment. The underlying premise behind the model that we have adopted is that determining the context (positive or negativ...
متن کاملECNU at SemEval-2016 Task 7: An Enhanced Supervised Learning Method for Lexicon Sentiment Intensity Ranking
This paper describes our system submissions to task 7 in SemEval 2016, i.e., Determining Sentiment Intensity. We participated the first two subtasks in English, which are to predict the sentiment intensity of a word or a phrase in English Twitter and General English domains. To address this task, we present a supervised learning-to-rank system to predict the relevant scores, i.e., the strength ...
متن کاملiLab-Edinburgh at SemEval-2016 Task 7: A Hybrid Approach for Determining Sentiment Intensity of Arabic Twitter Phrases
This paper describes the iLab-Edinburgh Sentiment Analysis system, winner of the Arabic Twitter Task 7 in SemEval-2016. The system employs a hybrid approach of supervised learning and rule-based methods to predict a sentiment intensity (SI) score for a given Arabic Twitter phrase. First, the supervised method uses an ensemble of trained linear regression models to produce an initial SI score fo...
متن کاملUWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination
We present a novel method for determining sentiment intensity. The main goal is to assign a phrase a score from 0 to 1 which indicates the strength of its association with positive sentiment. The proposed model uses a rich set of features with Gaussian processes regression model that computes the final score. The system was evaluated on the data from 7th task of SemEval 2016. Our regression mod...
متن کامل